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Topological phase transitions driven by gauge fields in an exactly solvable model
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We demonstrate the existence of a topologically ordered phase in Kitaev’s honeycomb lattice model. This
phase appears due to the presence of a vortex lattice and it supports chiral Abelian anyons. We characterize the
phase by its low-energy behavior that is described by a distinct number of Dirac fermions. We identify two
physically distinct types of topological phase transitions and obtain analytically the critical behavior of the
extended phase space. The Fermi-surface evolution associated with the transitions is shown to be due to the
Dirac fermions coupling to chiral gauge fields. Finally, we describe how the phase can be understood in terms

of interactions between the anyonic vortices.
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I. INTRODUCTION

Unlike other phases of matter, topologically ordered
phases of many-body quantum systems cannot be character-
ized by local symmetries. Instead, they are described by
long-range properties, which are responsible for the emer-
gence of anyons, exotic quasiparticles with fractional statis-
tics. Such phases occur in the celebrated fractional Quantum-
Hall systems! or in a variety of lattice models.” The latter
offer microscopic control and flexibility to study topologi-
cally ordered phases. Among them a pioneering role has
been played by Kitaev’s honeycomb lattice model,® where
the vortices can behave as non-Abelian anyons. The analytic
tractability of the model has enabled the explicit demonstra-
tion of their various characteristics including fusion rules,*
braid statistics,” topological degeneracy,® edge states,” and
entanglement entropy.® Several experimental realizations of
the model have also been proposed.’

Here we demonstrate the existence of a topological phase
in the honeycomb lattice model, which has been anticipated
by Kitaev.'” It appears for a fully packed lattice of vortices,
when they behave as non-Abelian anyons. The ground state
of this configuration is characterized by Chern number v
= =2, which implies the emergence of a phase that supports
chiral Abelian anyons. To understand the transitions between
the different topological phases, we study the evolution of
the Fermi surface, which describes the long-range properties
of the model. By considering the low-energy field theory of
Dirac fermions, we show how two distinct types of topologi-
cal phase transitions, i.e., different changes in the Fermi-
surface topology,'! occur due to coupling to chiral gauge
fields. We identify these to be due to dimerization and stag-
gering of the model’s couplings, both which can be realized
in the proposed optical lattice experiments.” Finally, we de-
rive analytically the phase boundaries and illustrate how the
transition between the non-Abelian and the chiral Abelian
phase can be understood in the context of anyon-anyon in-
teraction driven phase transitions.'> Due to an equivalence
between the models,'> our results apply directly also to
p-wave superconductors.
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II. HONEYCOMB LATTICE MODEL

A. Mapping to free Majorana fermions

Kitaev’s model,> comprises of spin-1/2 particles residing
on the vertices of a honeycomb lattice. The spins interact
according to the Hamiltonian

H=—EJU0'?U';V_KE o’fo‘}(a‘j, (1)
(i.)) (i.j.k)

where J;;=(J,);; are nearest-neighbor couplings and « is ei-
ther x, y, or z when (ij) is an x, y, or z link, respectively [see
Fig. 1(a)]. The second term is an effective magnetic field of
magnitude K, which explicitly breaks time-reversal invari-
ance. The sum in this term runs over all next to nearest-
neighbor triplets.*

When the spin operators are represented as of=ib{c,
where c¢;, b}, b}, and b; are Majorana fermions, the Hamil-
tonian takes the quadratic form H= iEi,jhA,-jcicj, where

The eigenstates |W) of the original Hamiltonian (1) are sub-
ject to the constraint

FIG. 1. A brickwall representation of the bicolorable honey-
comb lattice. (a) The links are labeled x, y, or z depending on their
orientation. (b) Numbering of sites on plaquette p. (c) The elemen-
tary cell comprises of a black and a white site connected by a z link.
The cells are labeled by k=(m,n) in the orthonormal basis n,
=(1,0) and n,=(0,1). (d) The full-vortex configuration is created
by setting J;;=—1 on alternating z links in x direction (dashed links)
and J;;=1 on all other links (solid links). The parallelogram shows
the four sites belonging to the unit cell.
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Since [H,;;]=0, the Hilbert space splits into sectors each
labeled by u, a certain pattern of eigenvalues u;;= = 1. How-
ever, as Djii;;=~1i;;D;, ii;; should be understood as a classical
Z, gauge field with local gauge transformations D;. The
physical gauge-invariant sectors are labeled by the eigenval-
ues of the plaquette operators W, =ii,il3,l34lls4lls61 16, that
satisfy [H,w,]=0 [see Fig. 1(b)]. These can be identified
with gauge invariant Wilson loop operators and their eigen-
values w,=—1 can be interpreted as having a vortex on
plaquette p. We refer to the eigenvalue patterns u={u;;} and
w={wp} as gauge and vortex sectors, respectively.

B. Gauge/coupling configuration equivalence

To study the model as the vortex sector is varied, it is
convenient to absorb the gauge u into the couplings. As can
be seen from Eq. (2), the gauge choice u;;= =1 can be lo-
cally regarded as the sign of the physical coupling J;;. There-
fore, the system can equivalently be viewed as being initially
prepared in the vortex-free sector (w,=1 on all plaquettes)
that contains the ground state'* with the other vortex sectors
emerging by tuning the signs of the coupling configurations
J={J;;}. This view is also physically motivated as it relates
the creation and transport of the vortices to the local manipu-
lation of the couplings.’

Strictly speaking one should also reverse the sign of the
effective magnetic field couplings K locally. However, when
K approximates an external magnetic field, i.e., when K
<|J,], considering only the signs of J, is a good approxima-
tion. Furthermore, we will see later that a nonzero K is re-
quired only to open a spectral gap. It does not affect the
Fermi-surface topology that characterizes the different
phases.

C. Full-vortex sector

When the couplings satisfy J,=~J,~J, and K>0 and
there are only a few vortices in the system, the vortices be-
have as strongly interacting non-Abelian Ising anyons.* The
chiral Abelian phase emerges in this same coupling regime
when one places a vortex on every plaquette, i.e., considers
the a full-vortex sector (w,=—1 on all plaquettes). It can be
created, for instance, by using a gauge where u;;= =1 alter-
nates on all z links in direction n, while u;;=1 on all other
links. The lattice geometry and the corresponding unit cell
containing four sites are illustrated in Figs. 1(c) and 1(d).
Normalizing |/,|=1, the gauge above is then equivalent to
setting inside the unit cell J,=1, J,=1, and (J_;,J,,)
=(~1,1), which corresponds to staggered couplings on z
links in direction n,. The system is translationally invariant
with respect to (2n,,n,) and a Fourier transformation gives
the Hamiltonian H= [ Bzdzpc;Hpcp, where

H - (hbb P ) @

T T
hbw - hbb

with
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. (i(ei”~* +e) i ) s
v i i(— ePx + e'Py) )
and
B sin(p, — py) sin(p,) — i cos(p,) )
oo = K( sin(p,) +i cos(p,)  —sin(p,—p,) (©)

The integral is over the first Brillouin zone (-3 =p,=7,
—m=p,=m) and ¢;=(C}p.Cppim >Cu.p>Cu.prmm ). The indi-
ces (b,w) and (p,p+mm,) refer to the two triangular sublat-
tices of the honeycomb lattice and the two z links inside the
unit cell, respectively.

This Hamiltonian can be readily diagonalized with the
lengthy expressions for the eigenvalues *FE;, and =E,,
given in Ref. 4. In contrast to the vortex-free sector that has
two Fermi points,® the low-energy behavior when K=0 is
now dominated by the four Fermi points (E; =0) located at
Q.=F (3.¢) and Ql=+ (—’3—7,5?”). Their number and loca-
tions follow from the symmetries of Eq. (4)

I'\H[=H_,. )

I,H, I} = Hpiom, (8)

where I')=0"®1 and I';=0°® ¢”. These hold also for non-
zero K. I'| acts only on the sublattice indices (b,w) and
describes a symmetry of the honeycomb lattice geometry. It
is responsible for the doubling of Fermi points in the vortex-
free sector. The new symmetry I'; acts also on the indices
(p,p+7m,) that correspond to the two z links inside the
unit cell. Exchanging these links maps (J,;,J,,)=(-1,1)
—(1,-1), which preserves the full-vortex sector. Although
I, is a lattice symmetry, it can be equivalently viewed as an
emergent global Z, gauge symmetry as the corresponding
gauges are inequivalent under the local gauge transforma-
tions D;. This new symmetry is responsible for the further
doubling of the Fermi points in the full-vortex sector. It
changes the Fermi-surface topology and thus implies a new
phase.

II1. FERMI-SURFACE ANALYSIS
A. Low-energy theory of Dirac fermions

To characterize this new phase and study its emergence
from the phase with non-Abelian anyons, we consider its
low-energy theory. Hamiltonian (4) is expanded around each
Fermi point Q'. by writing p=Q+k with |k|<1. In general,
one obtains

Ho= H% + Hok, + Hyk, + O(K*) 9)

for some 4X4 matrices H{. A projection onto the two-
dimensional low-energy subspace is given by

Hg=PUgHoUyP, (10)

where U diagonalizes H% and P projects onto the zero ei-
genvalue states of UQH%UE. Keeping only the first-order
terms in k and projecting onto the low-energy states, we
obtain
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FIG. 2. The normalized Hamiltonian (4) defines a mapping from
the Brillouin zone, which is topologically a torus 7,, to a unit
sphere S,. As K contributes to the low-energy theory only around
the Fermi points, the map is reduced to the independent contribu-
tions in Eq. (11) from each. Depending on the sign of the term
*Ko*, the neighborhoods of Q’;_, are mapped to either lower or
upper hemisphere. As the ones with same orientations u end up to
same hemispheres, the map winds around the unit sphere twice
when viewed from the origin.

_ . . K
Hy %a"i-k’10'z_r, (11)
* 23

where o', =[c*, = (-1)0"], k'= (alk+ak ,kl+a ), and ;=2

—(- 1)’\’3 This Hamiltonian describes massive Dirac fermi-
ons in two spatial dimensions. We interpret the mass being
due to the scalar field K, which couples chirally, i.e., with a
different sign, at the different Fermi points.

B. Fermi-surface topology and the Chern number

The chiral coupling of K implies a chiral phase, which can
be characterized by nonzero Chern number.'>!® We can re-
late the low-energy theory to the Chern number as follows.
As the contribution of K vanishes away from the Fermi
points, the four Hamiltonians, Eq. (11), define an orientation
preserving mapping from a torus (the first Brillouin zone) to
a surface enclosing the origin (coordinates given in basis
{o“}). The degree of this map gives the Chern number.>!’
The orientation of Fermi point Q can be characterized by a
winding number!'3

1
=—@® Tr(TH.'dH,), 12
Mo=— -, (U'H, dH,) (12)

where Cg is a loop in the momentum space around Fermi
point Q and I'=0® 1. Due to the chiral coupling of K, the
neighborhoods of both Q (Q%) with orientations Moi = =+1
(pgi =—1) are mapped to the lower (upper) hemisphere, with
rest of the Brillouin zone being mapped to the equator. This
is illustrated in Fig. 2. For four Fermi points the map winds
twice around the origin giving the Chern number v=-2. We
have verified this by calculating v also using the exact
eigenstates,'® as well as observed two nondegenerate edge
states when a system of 10° lattice sites is placed on a
cylinder.?’ The Chern number v=-2 implies that the vortices
in this phase are certain chiral Abelian anyons as cataloged
for free fermion systems by Kitaev.?
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FIG. 3. A numerical study of the evolution of Fermi-point loca-
tions (black dots) across the first Brillouin zone when (a) 8/;=0
— 0 (y=—2—0 transition due to dimerization) and (b) 8/,=0—1
(v=-2—-1 transition due to removal of coupling staggering). The
Fermi points move in the directions of the arrows and the annihila-
tions occur when 8J{= \V2-1 and 5J§=i, respectively.

C. Emergent gauge fields and Fermi-point transport

The phase boundaries of this new chiral Abelian phase
can be obtained by studying the effect of tuning the cou-
plings J on the low-energy field theory. This allows one to
obtain analytically the critical parameter values when the
Fermi-surface topology changes, i.e., when Fermi points are
either created or annihilated. To this end we consider the
system initially in the »=-2 phase and set K=0. The phase
with nonchiral Abelian toric code anyons (v=0) appears due

This can be modeled in the full-vortex Hamiltonian (4) as the
perturbation

5H1:_5J10.)'®0.X. (13)

Projecting this into the low-energy subspace and combining
the linearized Hamiltonians, Eq. (11), for the paired Fermi

points as I?IQi=diag(f_IQi ,I:IQi ), we obtain for small perturba-
tions (8J;<<1)

Hoi+ oH;= o - (K + y'Al), (14)

where now ad=(1®c" (-)icF®d), Y=c®]1, and A}
=40/, (Z’ | (1,1). This Hamiltonian describes the Dirac fermi-
ons belng coupled to a chiral gauge field.! As ki=(0,0) no
longer gives a vanishing Hamiltonian, the coupling to A’ 1
shifts the paired Fermi points Qi and Qi toward each other,
the direction being the same for both pairs. This agrees with
SH, respecting both symmetries, Egs. (7) and (8), which also
implies that all Fermi points have to vanish simultaneously.
This is indeed the case as shown in Fig. 3(a), where we
numerically demonstrate that dimerization in the large dJ,
limit can cause localization of the fermions on the z links and
thus completely remove the Fermi points.

We can similarly study the transition from the v=-2
phase to the non-Abelian Ising phase (v=-1). This occurs
when one tunes the couplings between the staggered,
(J,1.J,2)=(-1,1), and the uniform, (J_;,J,,)=(1,1), con-
figurations. In Eq. (4) this is equivalent to the Hamiltonian
perturbation

245132-3



VILLE LAHTINEN AND JIANNIS K. PACHOS

11

8, [

v=-1
v=-2 . 5J

0 6J2 1

FIG. 4. A section of the phase space as a function of &/; and
8J,. The dashed lines are the phase boundaries and the_circles are
the locations of the K-dependent critical points 6J]= V2+K?—1 and
8I5= —ﬂ The phases characterized by the Chern number v=0, v
=-1, and v=-2 correspond to the dimerized, uniform, and stag-

gered coupling configurations, respectively.

5H2= 5‘]20.)'@(0_)(_1)’ (15)

which respects the sublattice symmetry in Eq. (7), but breaks
Eq. (8), the emergent symmetry responsible for the chiral
Abelian phase. The low-energy theory is again a Dirac field
coupled to a chiral gauge field in Eq. (14), but now A’
a+l[1 (~1)"1y/3], which shifts the pairs Q). and Q2 inde-
pendent of each other. This is confirmed by Fig. 3(b), which
shows that large &/, distortions can cause the Qlt Fermi
points to annihilate while only transporting the other two.
The study of the Fermi-point transport holds also for K
#0, which allows us to obtain the K-dependent critical
points &J. As &J; is varied, the gapped Fermi points (the
minima/maxima of the bands *E ) follow the same trajec-
tories, although slower for larger K. The annihilations still
occur at the critical momenta Q,.={(0,0),(5,0),(5,m)},
where the gap always closes. This means that the eigenvalues

of Ho +0H; must satisfy *E,(K, 8/;)=0. The solutions are

given by 1+5JC—\2+K2 and 512=%, which agree with

our previous numerical studies.* In Fig. 4 we outline the
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extended phase space as functions of 8/, and 8J, showing
the three distinct topological phases. For general values of
the couplings, the critical staggered configuration and the
tricritical point occur when

K -1
Joa= Jo2 (16)
2
and
P=l+T+K, (17)
respectively. These extend the previous results>? and show

that a larger K has a stabilizing effect on the v=-2 phase.

IV. ROLE OF ANYON-ANYON INTERACTIONS

In general, a transition from a non-Abelian Ising phase to
a chiral Abelian phase has been predicted to arise due to
anyon-anyon interactions.'>?3 As the Ising anyons in the
honeycomb lattice model are strongly interacting,* we can
explicitly establish this connection at an intuitive level.

Based on numerical studies, we illustrate in Figs.
5(a)-5(d) how the spectrum evolves as the vortex density
inside a unit cell of fixed size is increased. Isolated vortices
introduce modes with zero energy [Fig. 5(a)], which acquire
momentum dependence at close ranges due to interactions
[Fig. 5(b)]. These zero modes describe the anyonic fusion
degrees of freedom* that are unique to non-Abelian anyons.
When many vortices interact with each other simultaneously,
these modes start forming a band structure [Fig. 5(c)]. Fi-
nally, as the density approaches the limiting full-vortex sec-
tor, the characteristic four Fermi points emerge [Fig. 5(d)].

We observe that the Fermi surface is modified due to an
emergence of a new low-energy band that is purely due to
the interacting non-Abelian anyons. As demonstrated earlier,
it is directly related to the Chern number that characterizes
the ground state of the whole system. Therefore, our study
reveals the microscopic mechanism for the anyon-anyon in-
teraction driven phase transitions.

| =
=
| =
LI
I I

[
[
.

FIG. 5. A schematic illustration of the emergence of the full-vortex band structure due to interacting anyonic vortices (black squares) as
the vortex density is increased. (a) A separated pair of vortices carries a zero mode (E, ,=0 for all p). (b) Short-range interaction causes the
zero mode to acquire momentum dependence. (c) The presence of many interacting vortices causes the zero modes to lose their character and

to start forming a band structure. (d) The full-vortex band structure.
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V. CONCLUSIONS

In summary, we have demonstrated the existence of a to-
pologically ordered phase in the honeycomb lattice model,
which supports chiral Abelian anyons. This phase appears
when the signs of the couplings alternate periodically, which
is equivalent to creating a fully packed lattice of strongly
interacting vortices. We characterized the phase by its dis-
tinct Fermi surface that arises due to an emergent lattice
symmetry and derived analytically the phase boundaries by
studying the Fermi-point transport. We showed analytically
that the transport, and thus the topological phase transitions,
translate in the low-energy theory to coupling to chiral gauge
fields. Their form is shown to be directly related to the lattice
symmetries, which could be employed when engineering
gauge fields in laboratory>* or studying the effects of lattice
deformations in graphene.?

PHYSICAL REVIEW B 81, 245132 (2010)

The chiral Abelian phase can also be realized in the pro-
posed optical lattice experiments, where the required stag-
gered coupling configurations can be created by using sev-
eral parallel lattices with readily tunable spin-interaction
patterns.” Various experimental techniques can be considered
for detecting the change in the Chern number.® Furthermore,
as the v=—1 phase with interacting non-Abelian anyons is
equivalent to a p-wave superconductor,'® a similar transition
occurs also there for a sufficiently dense vortex lattice. Our
results should apply as well to the chiral spin-liquid variants
of the model.”’
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